УДК 575+633.11:632.488

СЕЛЕКТИВНОЕ ВЛИЯНИЕ СОРТОВ ПШЕНИЦЫ С ГЕНОМ TSN1 НА ФОРМИРОВАНИЕ ПОПУЛЯЦИИ ВОЗБУДИТЕЛЯ ЖЕЛТОЙ ПЯТНИСТОСТИ $PYRENOPHORA\ TRITICI-REPENTIS$

Н.В. Мироненко, О.А. Баранова, Н.М. Коваленко, О.С. Афанасенко, Л.А.Михайлова

Всероссийский НИИ защиты растений, Санкт-Петербург

Популяции возбудителя эпидемиологически опасной болезни пшеницы — желтой пятнистости или пиренофороза — *Pyrenophora tritici-repentis* расширяют свой ареал, продвигаясь на север. Вирулентность популяции определяют взаимоотношения между продуктами генов (а)вирулентности или эффекторов и генов устойчивости/восприимчивости хозяина. Гриб *P. tritici-repentis* продуцирует белковые хозяин-специфичные токсины, индуцирующие некроз и хлороз на листьях восприимчивых сортов. Из них токсин Ptr ToxA, детерминируемый геном *ToxA*, считается основным фактором патогенности, который индуцирует некроз у сортов с геном восприимчивости *Tsn1*. Изучена роль гена *Tsn1* в распространении изолятов, несущих ген *ToxA*, в популяции патогена. Провели диагностику функциональной аллели гена *Tsn1* у 68 сортов пшеницы, включенных в Госреестр (2017), из 3-х регионов России. Для этого использовали метод ПЦР с праймерами на маркер Хfcр623. Аллель *Tsn1* обнаружена у 48.4% испытуемых сортов по Северо-Кавказскому региону, 16.7% — по Северо-Западному и 5.3 — по Западно-Сибирскому региону, что коррелирует с типом развития (озимый/яровой) сортов в данном регионе и встречаемостью в географических популяциях *P. tritici-repentis* изолятов с геном *ToxA*.

Эти результаты доказывают влияние гена восприимчивости Tsn1 в возделываемых сортах пшеницы, на встречаемость в популяциях P. tritici-repentis, обитающих на этих сортах, изолятов с геном ToxA. Вместе с тем, северо-западная и западно-сибирская популяции патогена отличаются высокой вирулентностью. Несмотря на низкую встречаемость в этих популяциях изолятов с геном ToxA, поражение районированных сортов пшеницы как с геном Tsn1, так и без него обеспечивают иные некрозиндуцирующие токсины, отличные от Ptr ToxA. Мы считаем нецелесообразным проведение MAS на ген Tsn1 в селекционном процессе для создания сортов пшеницы устойчивых к желтой пятнистости.

Ключевые слова: *Pyrenophora tritici-repentis*, желтая пятнистость, пшеница, токсин Ptr ToxA, ген восприимчивости, *Tsn1*, маркер Xfcp623, *ToxA*, популяции, MAS.

Относительно недавно возникшая болезнь пшеницы – желтая пятнистость листьев, быстро расширяет свой ареал на север и северо-запад РФ [Михайлова и др., 2007; 2014]. Возбудитель болезни аскомицетный гомоталличный гриб Pyrenophora tritici-repentis [(Died.) Drechs., анаморфа Drechslera tritici-repentis (Died.) Shoemaker]. Основными факторами патогенности P. tritici-repentis считаются белковые токсины Ptr ToxA и Ptr ToxB, индуцирующие некроз и хлороз листьев у восприимчивых сортов. Синтез Ptr ToxA и Ptr ToxB контролируется генами ToxA и ToxB, соответственно [Lamari, Bernier, 1989; Ciuffetti et al., 1997]. Эти гены клонированы и на них разработаны геноспецифичные праймеры [Andrie et al., 2007], что позволяет методом ПЦР определять их наличие в изолятах патогена. Чувствительность пшеницы к Ptr ToxA детерминируется геном Tsn1. Взаимоотношения в патосистеме «пшеница – P. tritici-repentis» осуществляются по типу «ген-на-ген», и выражаются в том, что продукты генов вирулентности патогена (=хозяин-специфичные токсины) при взаимодействии с продуктами генов восприимчивости растения-хозяина вызывают совместимость, т.е. развитие болезни [Strelkov, Lamari, 2003; Ciufetti et al., 2010]. Это положение справедливо также для ряда других токсинобразующих грибов: например, Stagonospora nodorum [Phan et al., 2016], Cochliobolus carbonum [Scott-Craig et al., 1992], C. victoriae, C. heterostrophus [Markham, Hille, 2001; Walton, Panaccione, 1993].

На ген восприимчивости Tsn1 разработаны молекулярные маркеры [Zhang et al., 2009; Faris et al., 2010]. Это SSR-маркеры на дистальные области гена Tsn1: Xfcp1, Xfcp620, Xfcp394 [Zhang et al., 2009]. После того, как ген Tsn1 был клонирован и секвенирован, был разработан до-

минантный SSR маркер Хfcp623 на внутреннюю область гена [Faris et al., 2010].

Ранее на территории России нами были идентифицированы три географические популяции P. tritici-repentis, различающиеся по вирулентности [Михайлова и др., 2014, 2015] и SSR маркерам [Мироненко и др., 2016]. Это северокавказская, северо-западная и западно-сибирская (представлена омской) популяции, которые также различаются по встречаемости в них изолятов с геном ТохА (ТохА+). Максимальная встречаемость изолятов ТохА+ (80%) в северо-кавказской популяции, в северо-западной популяции ТохА+ изолятов в 2 раза меньше (42%) [Мироненко и др., 2015]. В западно-сибирской популяции отмечена минимальная встречаемость ТохА+изолятов (27%) [Мироненко и др., 2017]. Очевидно, что при расширении ареала патогена на север какие-то механизмы препятствуют распространению гена ТохА в популяции. Одним из таких механизмов может быть селективный отбор изолятов ТохА+ на сортах с доминантной аллелью *Tsn1*.

Цель нашего исследования — выявить влияние сортов пшеницы с геном восприимчивости *Tsn1* на распространенность изолятов, несущих ген *ToxA*, в популяциях *P. tritici-repentis*. Для этого мы проанализировали выборку сортов мягкой пшеницы, районированных в регионах происхождения изученных нами популяций патогена — Северо-Кавказском, Северо-Западном и Западно-Сибирском — на предмет наличия в них доминантной аллели *Tsn1*. Полученные результаты сравнили с ранее опубликованными данными по встречаемости изолятов ToxA⁺ в популяциях *P. tritici-repentis* [Мироненко и др., 2015; Мироненко и др., 2017].

Материалы и методы

Материалом исследования служили 68 сортов пшеницы, районированных и возделываемых в Северо-Кавказском, Северо-Западном и Западно-Сибирском регионах России (табл.1). Характеристика типа развития (озимый/яровой) каждого сорта взята из Государственного реестра селекционных достижений за 2017 год (http:// reestr.gossort.com/).

Из проростков пшеницы выделяли ДНК известным методом [Миггау, Thompson, 1980]. Доминантную аллель гена *Tsn1* идентифицировали в сортах методом ПЦР с праймерами на маркер Xfcp623 (*Tsn1*). Состав праймеров (5'-> 3'): F - CTATTCGTAATCGTGCCTTCCG; R - CCTTCTCTCACCGCTATCTCATC [Faris et al., 2010]. Размер диагностического фрагмента – продукта амплификации маркера Xfcp623 составляет 380 п.н. Наличие продукта амплификации свидетельствует о существовании доминантной аллели гена *Tsn1*, отсутствие – о нулевой (рецессивной) аллели *tsn1*.

Состав реакционной смеси [Roder et al., 1998]: (\times 1) буфер (без магния), 0.20 mM каждого из 4-х dNTP, по 250 нМ каждого праймера, 1.5 mM MgCl $_2$, 1 ед. Таq-ДНК - полимеразы (Helicon), 50–100 нг ДНК в объеме 25 мкл.

ПЦР выполняли на термоциклере $C1000^{TM}$ (BioRad). Режим амплификации: преденатурация при $94\,^{\circ}C$ 3 мин. Затем в течение 45 циклов: $94\,^{\circ}C - 1$ мин, $60\,^{\circ}C - 1$ мин, $72\,^{\circ}C - 2$ мин; конечный синтез в течение 10 минут.

Продукты амплификации разделяли в 1.7% агарозном геле, окрашенном бромистым этидием, при напряжении 100 В в течение 3 часов и фотографировали. В качестве маркеров молекулярных масс использовали GeneRulerTM 50 b.p. DNA Ladder фирмы Fermentas.

Коэффициент корреляции считали с помощью программы Microsoft Office Excel 2007.

Результаты

Демонстрация результатов ПЦР идентификации аллели Tsn1 представлена на рис.1. Доминантная аллель Tsn1

была выявлена в 15 сортах из 31, выращиваемых в Северо-Кавказском регионе, в 3 сортах из 18, районированных

на северо-западе, и одном из 19 западно-сибирских сортов, что составляет 48.4, 16.7 и 5.3% соответственно (табл.1). Оказалось, что доля сортов пшеницы с геном Tsn1 в каждом из трех регионов коррелирует с долей $ToxA^+$ изолятов $P.\ tritici-repentis$ в популяциях патогена, обитающих в этих регионах, -80, 42 и 27% соответственно [Мироненко и др., 2015, 2016а]. Коэффициент корреляции составил 0.99. Причем, северо-кавказские сорта все оказались

озимыми, западно-сибирские — яровыми (кроме одного), а северо-западные были представлены яровыми и озимыми примерно в равных долях. В подавляющем большинстве сорта с геном Tsn1 имеют озимый тип развития. Коэффициент корреляции составил 0.94. Изменчивость сортов по типу развития и аллельному составу гена Tsn1, а также изменчивость популяций патогена по гену ToxA в трех регионах $P\Phi$ отражена графически на рис. 2.

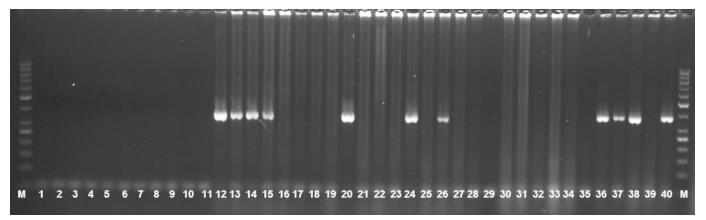


Рисунок 1. Идентификация доминантной аллели гена Tsn1. Размер диагностического фрагмента 380 п. н. M — маркеры молекулярных масс 50 п.о. (Fermentas)

Таблица 1. Идентификация аллелей гена Tsn1 в сортах пшеницы методом ПЦР

Тип развития/	Сорта районированные и возделываемые в регионе		
аллель Tsn1	Северо-Кавказском	Северо-Западном	Западно-Сибирском
Озимый / Tsn1	Афина, Безостая 1, Ермак, Есаул, Крошка, Лауреат, Паллада, Палпич, Памяти Калиненко, Сила, Старшина, Таня, Фишт, Фортуна, Юбилейная 100	_	_
Озимый/ tsn1	Адель, Айвина, Батько, Верта, Виза, Восторг, Дея, Доля, Зерноградская 10, Зерноградская 11, Золотко, Красота, Ласточка, Ольхон, Утриш, Юнона	Аристос, Бриллиант, Галина, Завет, Инна, Корунд, Мера, Немчиновская 24, Поэма, Русское поле, Цобель	Новосибирская 3
Яровой / Tsn1		Софья, Дарья Красноуфимовская 100	Алтайская жница
Яровой /tsn1	_	Рассвет Ленинградская 8 Ленинградская 6 Ленинградская 97	Зауралочка, Мелодия, Обская 2, Омская 28, Омская 29, Омская 33, Омская 35, Омская 36, Омская 37, Омская 38, Омская 41, Омская краса, Памяти Азиева, Тобольская, Уралосибирская, Челяба 75, Экада 113

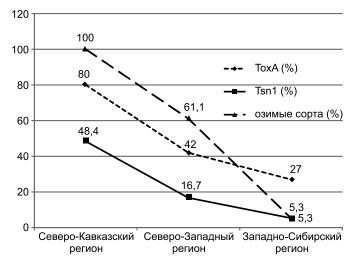


Рисунок 2. Процентное содержание в популяциях P. tritici-repentis изолятов ToxA+, доли $TsnI^+$ и озимых в анализируемой выборке районированных сортов пшеницы в трех регионах России

По данным Госреестра 2017 года (325 сортов) мы подсчитали распределение озимых и яровых сортов в трех регионах РФ: по Северо-Кавказскому региону 2% яровых и 98% озимых сортов, по Западно-Сибирскому – 82% яровых и 18% озимых и по Северо-Западному – 47.5% яровых и 52.5% озимых. Эти данные практически совпадают с полученными на взятой нами в анализ выборке сортов, что свидетельствует о ее репрезентативности.

Изучению роли взаимодействия токсина Ptr ToxA и гена восприимчивости пшеницы TsnI в развитии болезни посвящены многие работы. Отмечено, что часто встречаются изоляты гриба, имеющие ToxA, но не вызывающие некроз на растениях с геном TsnI [Andrie et al., 2007; Faris et al., 2012]. Секвенирование гена ToxA у этих изолятов не выявило нуклеотидной изменчивости в гене [Aboukhaddour et a., 2013; Friesen et al., 2006; Ali et al., 2010; Leisova-Svobodova et al., 2010]. Таким образом, изменчивость аллелей гена ToxA не ответственна за раз-

личия в эффектах взаимодействия Tsn1-Ptr ToxA. Выдвинуты гипотезы, что эффект взаимодействия Tsn1-Ptr ToxA уменьшается или маскируется благодаря эпистатическим эффектам других генных взаимодействий [Friesen et al., 2008]. Показано, что у различных изолятов гриба одни и те же эффекторы могут иметь разные уровни экспрессии *in planta*. Такие факты были описаны для двух изолятов S. nodorum, имеющих ген ToxA [Faris et al., 2011]. В работе Manning & Ciuffetti [2015] показано, что симптомы, вызываемые Ptr ToxA, маскируют симптомы, индуцируемые другими хозяин-специфичными токсинами

В некоторых работах молекулярные маркеры на доминантную аллель *Tsn1* предлагается использовать для маркер-вспомогательной селекции (MAS – marker assisted selection), – отбора и последующего удаления из селекционного процесса восприимчивых к желтой пятнистости растений [Faris et al., 2010; 2012; Kokhmetova et al., 2017]. В связи с полученными в данной работе результатами и

анализом данных, полученных нами ранее, мы считаем нецелесообразным проведение скрининга образцов пшеницы на наличие доминантной аллели Tsn1 помощью молекулярных маркеров (MAS) с целью удаления этих образцов из селекционного процесса. Можно ожидать, что на сортах с генотипом tsnltsnl проявятся некроз индуцирующие токсины ТохА+ изолятов, отличные от Ptr ToxA, супрессированные ранее при взаимодействии Tsn1-ToxA, не говоря уже о ТохА- изолятах, также продуцирующих иные некроз индуцирующие токсины. Сделанный вывод подтверждается данными других авторов (Manning, Ciuffetti, 2015; Phan et al., 2016). Например, из 56 сортов пшеницы, в которых с помощью маркера Хfср 394 была определена рецессивная аллель tsn1, 43 сорта, в том числе сорта Зерноградская 10, Зерноградская 11 и Виза, использованные в нашей работе, оказались восприимчивы хотя бы к одному изоляту при инокуляции сортов тремя различными изолятами *P. tritici-repentis* [Kokhmetova et al., 2017].

Выводы:

- 1. Охарактеризованы сорта пшеницы, районированные в трех регионах РФ по наличию гена восприимчивости *Tsn1*: доля сортов с этим геном составила 48.4% в Северо-Кавказском, 16.7% в Северо-Западном и 5.3% в Западно-Сибирском регионе.
- 2. Показано селективное значение гена восприимчивости *Tsn1*: доля сортов пшеницы с этим геном в каждом
- из трех регионов коррелирует с долей $ToxA^+$ изолятов $P.\ tritici-repentis$ в популяциях патогена, обитающих в этих регионах.
- 3. Сделано заключение о нецелесообразности проведения MAS на ген *Tsn1* в селекционном процессе получения сортов пшеницы устойчивых к желтой пятнистости.

Библиографический список (References)

- Мироненко Н. В., Баранова О. А., Коваленко Н. М.: Михайлова Л. А. Частота гена Тоха в популяциях *Pyrenophora tritici-repentis* на Северном Кавказе и северо-западе России // Микол. и фитопатол. 2015. Т. 49. N. 5. C. 325–329.
- Мироненко Н. В., Баранова О.А., Коваленко Н.М., Михайлова Л.А., Россеева Л.П. Генетическая структура популяций *Pyrenophora tritici- repentis*, существующих на территории России, по микросателлитным маркерам // Генетика. 2016. Т. 52.N 8. С. 885–894.
- Мироненко Н. В., Коваленко Н. М., Баранова О. А., Михайлова Л. А. Роль некроз-индуцирующих токсинов в расширении ареалов популяций *Pyrenophora tritici-repentis* // Современная микология в России. 2017. Т. 7. С. 7–879. Материалы 4 съезда микологов России/ Москва, 2017. Под Ред. Дьякова Ю.Т., Сергеева Л.Ю.
- Михайлова Л. А., Тернюк И. Г., Мироненко Н. В. Структура популяций *Pyrenophora tritici-repentis* из европейской части России по признаку вирулентности // Микол. и фитопатол. 2007. Т. 41. N 3. C. 269–275.
- Михайлова Л. А., Тернюк И.Г., Мироненко Н.В. Характеристика популяций *Pyrenophora tritici-repentis* по признаку вирулентности // Микол. и фитопатол. 2010. Т.44. N 3. C. 263–272.
- Михайлова Л. А., Мироненко Н.В, Коваленко Н.М. Популяции *Pyrenophora tritici-repentis* на северном кавказе и северо-западе России: расовый состав и динамика вирулентности // Микол. и фитопатол. 2014. Т. 48. N 6. C. 393—400.
- Михайлова Л. А., Коваленко Н. М., Мироненко Н. В., Россеева Л. П. Популяции *Pyrenophora tritici-repentis* на территории России // Микол. и фитопатол. 2015. T.49. N 4. C. 257–261.
- Abdullah S., Sehgal S. K., Ali1 S., Liatukas Z., Ittu M., Kaur N. Characterization of Pyrenophora tritici-repentis (Tan Spot of Wheat) Races in Baltic States and Romania // Plant Pathol. J. 2017. V. 33. N 2. P. 133–139.
- Aboukhaddour R., Turkington T.K., Strelkov S. E. Race structure of *Pyrenophora tritici-repentis* (tan spot of wheat) in Alberta, Canada // Can. J. Plant Pathol. 2013. V. 35. N. 2. P. 256–268.
- Ali, S., Gurung, S. and Adhikari, T. B. Identification an characterization of novel isolates of *Pyrenophora tritici-repentis* from Arkansas. Plant Dis. 2010. V. 94. P. 229–235.
- Andrie R. M., Pandelova I., Ciuffetti L. M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification // Phytopathology. 2007. V. 97. P. 694–701.

- Ciuffetti L. M., Tuori R. P., Gaventa J. M. A single gene encodes a selective toxin causal to the development of tan spot of wheat // Plant Cell. 1997. V. 9. P. 135–144.
- Ciuffetti L.M., Manning V.A., Pandelova I., Betts M.F., Martinez J.P. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici- repentis wheat interaction // New Phytol. 2010. V. 187. P. 911–919.
- Faris J. D., Zhang Z., Lu H. J., Lu S. W., Reddy L. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 13544–13549.
- Faris J. D., Abeysekara N. S., McClean P. E., Xu S.S., Friesen T.L. Tan spot susceptibility governed by the Tsn1 locus and racenonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa // Mol. Breeding. 2012. V. 30. P. 1669–1678.
- Friesen T. L., Stukenbrock E. H., Liu Z., Meinhardt S., Ling H., Faris J. D., Rasmussen J.B., Solomon P. S., McDonald B.A., Oliver R. P. Emergence of a new disease as a result of interspecific virulence gene transfer // Nature Genet. 2006. V. 38. P. 953–956.
- Friesen T. L., Zhang Z., Solomon P. S., Oliver R. P., Faris J. D. Characterization of the interaction of a novel *Stagonospora nodorum* host-selective toxin with a wheat susceptibility gene // Plant Physiol. 2008. V. 146. P. 682–693.
- Kokhmetova A., Kremneva J., VolkovaG., Atishova M., Sapakhova Z. Evaluation of wheat cultivars growing in Kazakhstan and Russia for resistance to tan spot // Journal of Plant Pathology. 2017. Vol. 99. N. 1. P. 161–167.
- Lamari L., Bernier C. C. Toxin of *Pyrenophora tritici-repentis*: host-specificity, significance in disease, and inheritance of host-reaction // Phytopathology. 1989. V. 79. P. 740–744.
- Leisova-Svobodova L., Hanzalova A., Kucera L. The variability of a *Pyrenophora tritici-repentis* population as revealed by inter-retrotransposon amplified polymorphism with regard to the Ptr ToxA gene // Czech mycol. 2010. V. 61. N. 2. P. 125–138.
- Manning V. A., Ciuffetti L. M. Necrotrophic Effector Epistasis in the *Pyrenophora tritici-repentis*-Wheat Interaction. PLoS ONE 2015. V. 10. N. 4. e0123548. doi:10.1371/journal.pone.0123548
- Markham J. E., Hille J. Host-selective toxins as agents of cell death in plantfungus interactions // Mol. Plant Pathol. 2001. V. 2. N 4. P. 229–239.
- Murray H. G., Thompson W. F. Rapid isolation of high molecular weight DNA // Nucl. Acids Res. 1980. V. 8. P. 4321–4325.

- Phan H. T. T., Rybak K., Furuki E. et al. Differential effector gene expression underpins epistasis in a plant fungal disease // The Plant Journal. 2016. V. 87. P. 343–354.
- Roder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M.-H., Leroy Ph., Ganal M. W. A Microsatellite Map of Wheat // Genetics. 1998. V. 149. P. 2007–2023.
- Scott-Craig J. S., Panaccione D. G., Pocard J.-A., Walton J. D. The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus *Cochliobolus carbonum* is encoded by a 15.7-kilobase open reading frame // J. Biol. Chem. 1992. V. 267. N. 36. P. 26044–49.
- Strelkov S, Lamari L. Host parasite interactions in tan spot [*Pyrenophora tritici-repentis*] of wheat // Can J Plant Pathol. 2003. V. 25. P. 339–349.
- Walton J. D., Panaccione D. G. Host-selective toxins and disease specificity: perspectives and progress // Annu. Rev. Phytopathol. 1993. V. 31. P. 275–303.
- Zhang, Z., Friesen T. L., Simons K. J., Xu S. S., Faris J. D. Development, identification, and validation of markers for marker-assisted selection against the *Stagonospora nodorum* toxin sensitivity genes Tsn1 and Snn2 in wheat // Mol. Breed. 2009. V. 23. P. 35–49.

Translation of Russian References

- Mikhailova L.A., Kovalenko N.M., Mironenko N.V., Rosseeva L.P. Populations of *Pyrenophora tritici-repentis* on the territory of Russia. Mikologiya i fitopatologiya. 2015. V. 49, N. 4. P. 257–261. (In Russian).
- Mikhailova L.A., Mironenko N.V., Kovalenko N.M. Populations of *Pyrenophora tritici-repentis* in the North Caucasus and North-West Russia: racial composition and dynamics of virulence. Mikologiya i fitopatologiya. 2014. V. 48, N 6. P. 393–400 (In Russian).
- Mikhailova L.A., Ternyuk I.G., Mironenko N.V. Population structure of *Pyrenophora tritici-repentis* from the European part of Russia by its virulence. Mikologiya i fitopatologiya. 2007. V. 41, N 3. P. 269–275 (In Russian).
- Mikhailova L.A., Ternyuk I.G., Mironenko N.V. Characteristic of *Pyrenophora tritici-repentis* populations by their virulence. Mikologiya i fitopatologiya. 2010. V. 44, N. 3. P. 263–272 (In Russian).

Plant Protection News, 2017, 3(93), p. 23-27

- Mironenko N.V., Baranova O.A., Kovalenko N.M., Mikhailova L.A. Frequency of *ToxA* gene in north Caucasian and North-West Russian populations of *Pyrenophora tritici-repentis*. Mikologiya i fitopatologiya. 2015. V. 49. N. 5. P. 325–329 (In Russian).
- Mironenko N.V., Baranova O.A., Kovalenko N.M., Mikhailova L.A., Rosseva L.P. Genetic structure of Russian populations of *Pyrenophora tritici-repentis* determined by using microsatellite markers. Russian Journal of Genetics. 2016. Vol. 52. No. 8. P. 771–779.
- Mironenko N.V., Kovalenko N.M., Baranova O.A., Mikhailova L.A. Role of necrosis-inducing toxins in texpansion of ranges of *Pyrenophora tritici-repentis* populations. In: Dyakov Yu.T., Sergeev L.Yu. (Eds.). Sovremennaya mikologiya v Rossii. Moscow. 2017. V. 7. P. 78–79 (In Russian).

SELECTIVE INFLUENCE OF WHEAT CULTIVARS WITH TSN1 GENE ON THE FORMATION OF TAN SPOT CAUSATIVE AGENT *PYRENOPHORA TRITICI-REPENTIS* POPULATION

N.V. Mironenko, O.A. Baranova, N.M. Kovalenko, O.S. Afanasenko, L.A. Mikhailova

All-Russian Institute of Plant Protection, St. Petersburg, Russia

Populations of *Pyrenophora tritici-repentis*, the causative agent of an epidemiologically dangerous disease of wheat tan spot, expand their range, moving northward. The relationships between the products of (a)virulence genes or effectors and resistance/susceptibility host genes determine of population virulence. *P. tritici-repentis* produces protein host-specific toxins which induce necrosis and chlorosis on leaves of susceptible cultivars. Of those, the toxin Ptr ToxA determined by the *ToxA* gene is considered the main pathogenicity factor that induces necrosis in varieties with the susceptibility gene *Tsn1*. The role of *Tsn1* gene in the distribution of isolates carrying the *ToxA* gene in the pathogen population was studied. A functional allele of the *Tsn1* gene was diagnosed in 68 wheat cultivars from 3 regions of Russia. For this purpose, a PCR method with primers for the dominant Xfcp623 marker has been used. *Tsn1* allele is found in 48.4% of the "North Caucasian" wheat cultivars, 16.7% of "Northwestern" and 5.3% of "West Siberian" cultivars, which correlates with the type of cultivar development in a region and the occurrence of *P. tritici-repentis* isolates with the *ToxA* in geographical populations. These results prove the influence of the *Tsn1* in cultivated wheat cultivars on the occurrence of isolates with the *ToxA* in the populations of *P. tritici-repentis* inhabited those cultivars. At the same time, "Northwestern" and "West Siberian" populations of the pathogen are highly virulent. Despite the low occurrence of ToxA⁺ isolates in those populations, the defeat of wheat cultivars with both the *Tsn1* and without it is provided by other necrosis-inducing toxins different from Ptr ToxA. We consider it inappropriate to conduct MAS against the Tsn1 gene in the breeding process for producing wheat varieties resistant to the tan spot.

Keywords: *Pyrenophora tritici-repentis*; tan spot; wheat; toxin Ptr ToxA; susceptibility gene; *Tsn1*; marker Xfcp623; *ToxA*; population; MAS.

Сведения об авторах

Всероссийский НИИ защиты растений, шоссе Подбельского, 3, 196608 Санкт-Петербург, Пушкин, Российская Федерация *Мироненко Нина Васильевна. Руководитель сектора, доктор биологических наук, e-mail: nina2601mir@mail.ru Баранова Ольга Александровна. Старший научный сотрудник, кандидат биологических наук, e-mail: baranova_oa@mail.ru Ковалено Надежда Михайловна. Старший научный сотрудник, кандидат биологических наук, e-mail: nadyakov@mail.ru Афанасенко Ольга Сильвестровна. Руководитель лаборатории, доктор биологических наук, академик РАН, e-mail: olga.s.afan@gmail.com Михайлова Людмила Александровна. Эксперт, доктор биологических наук, e-mail: mikhailovala@mail.ru

Information about the authors

^{*} Ответственный за переписку

^{*} Responsible for correspondence